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ABSTRACT 

Wind tunnel tests were conducted to determine the dynamic- and 
static-stability derivatives of an approximately 0. Oil-scale North 
American Rockwell straight wing and delta wing orbiters in proximity 
with an 0. Oil-scale General Dynamics/Convair delta wing booster. 
Interference-free data on the orbiter models were also obtained.    Mea- 
surements were made with a forced-oscillation dynamic balance as the 
model oscillated ±1. 6 deg at angles of attack ranging from -6. 8 to 
9. 7 deg.    Data were obtained at Mach numbers 1. 76 and 2 and at free- 
stream Reynolds numbers, based on orbiter model length, ranging from 
2. 03 x 106 to 6. 33 x 10^.    Both orbiter configurations were dynamically 
and statically stable,  and in general, the level and trends of the orbiter 
derivatives were hot greatly affected when in the proximity of the 
booster.   The present damping data show fair agreement with damping 
data from the National Aeronautical Establishment (NAE),  which are 
the only other known damping data of this type.    However,  the absolute 
level of the NAE Cm^ data, which were obtained using the half-model 
technique,  was approximately 50 percent lower than that of the present 
data obtained on a three-dimensional model.   Some disagreement was 
also found between the present static-stability data and data from the 
NASA-Ames and NASA-Langley test facilities. 

ill 
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NOMENCLATURE 

Cm Pitching-moment coefficient,  pitching moment/qn)Swc 
cma dCmlda,   1/radian 

cmö aCm/9(ac/2V0O) )     Local damping-in-pitch derivatives, 

Cmq aCm/a(qc/2Va>))     1/radian 

Cj^ Normal-force coefficient,  normal force/q   Sw 

CNa aC]Sf/3o,   1/radian 

c Mean aerodynamic chord {reference length), ft 

L Booster model length,  ft or in. 

H Orbiter model length,  ft or in. 

M,,, Free-stream'Mach number 

p Tunnel stilling chamber pressure,  psia 

q Pitching velocity,  radians/sec 

qa Free-stream dynamic pressure,  psia 

Reji Free-stream Reynolds number based on model length 

Sw Reference area (total wing area), ft2 or in.** 

T0 Tunnel stilling chamber temperature, °R 

V,,, Free-stream velocity,  ft/sec 

X Longitudinal separation distance between booster and 
orbiter center of gravity, in. 

xc_ Distance from model nose to center of gravity (pivot axis), 
in. 

Z Vertical separation distance between booster and orbiter 
center of gravity,  in. 

a Angle of attack,  deg 

"trim Trim angle of attack,  deg 

0- Time rate of change of angle of attack,  radian/sec 

6e Elevator angle,  deg 

6 Oscillation amplitude,  deg 

w Angular frequency,  radian/sec 

tüc"/2V00 Reduced frequency parameter,  radian 

Vlll 
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SECTION I 
INTRODUCTION 

The problem of abort separation of the space shuttle vehicle is 
really not a new problem.    Separation studies of two parallel lifting 
stages were initiated during the 1959-1960 Air Force reusable booster 
studies.   In 1962,  Langley Research Center started its investigation of 
the abort separation problem.   John P. Decker of NASA Langley 
authored several papers and technical reports concerning abort separa- 
tion characteristics of reusable launch vehicles.    The majority of these 
reports are referenced in Ref.   1.   It became apparent from this early 
work that in order to provide meaningful information on the magnitude 
and character of the separation problem it was necessary to determine 
the behavior of the vehicles during the staging maneuver.    Langley 
developed a two-body trajectory simulation computer program which 
utilized static aerodynamic data.    Results from this program showed 
that staging should occur outside the sensible atmosphere,   and current 
space shuttle vehicles are designed for normal separation outside the 
sensible atmosphere.    It is possible that the mission may have to be 
aborted before the design separation occurs; therefore, the vehicles 
must have the capability of performing the separation maneuver safely. 

Decker (Ref.   1), utilizing the two-body trajectory program, showed 
that current estimated interference-free values of the pitch damping 
dynamic-stability derivatives are one or more orders of magnitude 
smaller than the values needed to achieve safe operation.    In order to 
increase the damping-in-pitch derivatives by using stability augmenta- 
tion,  one must know accurate interference-free damping values,  and 
also how the damping derivatives vary when the two vehicles are in 
proximity to each other. 

To date, almost all the experimental separation tests have been 
concerned with obtaining static-stability data.    It is evident that the 
damping derivatives of two vehicles when in proximity to each other 
must also be measured.   Orlik-Ruckemann of NAE has obtained limited 
dynamic-stability data on a space shuttle vehicle utilizing the half- 
model technique (Ref.  2).    The purpose of the present test program is 
to obtain pitch damping dynamic-stability data on a complete 
3-dimensional vehicle when in close proximity with another vehicle. 

The present tests were conducted in the von Karmän Gas Dynamics 
Facility (VKF), Supersonic Wind Tunnel (A),  on an approximately 
0. Oil-scale North American Rockwell straight wing and delta wing 
orbiters with and without an 0. Oil-scale General Dynamics /Convair 
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delta wing booster in proximity.    Data were obtained at Mach numbers 
1. 76 and 2 at Reynolds numbers,  based on model length,  of 2. 03 x 10^ 
to 6. 33 x 106.   A small-amplitude forced-oscillation balance was used 
to obtain data at oscillation amplitudes of approximately ±1. 6 deg at 
angles of attack from -6. 8 to 9. 7 deg. 

SECTION II 
APPARATUS 

2.1   TEST FACILITY 

The Supersonic Wind Tunnel (A) (Fig.   1, Appendix I) is a continuous, 
closed-circuit, variable density wind tunnel with an automatically driven 
flexible-plate-type nozzle and a 40- by 40-in.  test section.    The tunnel 
can be operated at Mach numbers from 1. 5 to 6 at maximum stagnation 
pressures from 29 to 200 psia,  respectively,   and at stagnation tempera- 
tures up to 75 0°R.    Minimum stagnation pressures range from about 
one-tenth to one-twentieth of the maximum pressures at each Mach num- 
ber.    Mach number changes may be made without stopping the tunnel in 
most instances.    The orbiter model could be injected into the tunnel for 
a test run and then retracted for model changes without interrupting the 
tunnel flow. 

2.2  MODELS 

The models tested were approximately 0. 011 scale and were fabri- 
cated at NASA-Langley Research Center.    The North American Rockwell 
straight wing (NARSW) orbiter (Fig.  2a) is known as the 130C configu- 
ration with the 130G wing location,  and the North American Rockwell 
delta wing (NARDW) orbiter (Fig.  2b) is known as the 134D configura- 
tion.    The delta wing booster is an approximate General Dynamics/ 
Convair B9U booster without canards or vertical tail.    The two orbiter 
models, fabricated from aluminum, were tested alone and in proximity 
with the delta wing booster.    The straight wing orbiter, typical of a low 
cross range orbiter, had a leading-edge sweep of 21. 6 deg.   The delta 
wing orbiter,  typical of a high cross range orbiter,  had a leading edge 
sweep of 60 deg.   The delta wing orbiter was tested with elevator de- 
flections of 0 and -20 deg.   The fuselage of the delta wing booster was 
constructed from mahogany,  and the delta wing, with a leading-edge 
sweep of 52. 5 deg,  was fabricated from aluminum.    Model geometries 
are shown in Fig.   3. 
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The orbiter model was sting supported to the tunnel pitch mechanism, 
and the booster model was supported from the top of the tunnel by a 
vertical strut.    A photograph and a sketch of the model installation are 
shown in Figs.  4 and 5, respectively. 

2.3  INSTRUMENTATION 

The small amplitude (±3 deg) forced-oscillation balance system 
(Ref.   3) is a one-degree-of-freedom oscillatory system incorporating a 
cross-flexure pivot.    During the test, model oscillation amplitudes 
were approximately ±1. 6 deg.    The balance is forced to oscillate by an 
electromagnetic shaker motor located in the aft portion of the sting. 
The angular displacement of the model is measured by a strain-gage 
bridge mounted on a cross flexure,  and the input torque to the system 
is measured by a strain-gage bridge mounted at the minimum cross- 
sectional area of the torque beam.    Whenever the model balance system 
was oscillated at a frequency other than its undamped natural frequency, 
electronic resolvers were used to determine the in-phase and out-of- 
phase components of the forcing torque signal.    The "forcing system is 
equipped with a feedback control network as described in Ref.  3 to 
provide positive amplitude control for testing either dynamically stable 
or unstable configurations. 

SECTION III 
PROCEDURE 

3.1   TEST PROCEDURE 

The orbiter model was oscillated at oscillation amplitudes of 
approximately ±1.6 deg,   and the resulting time-resolved torque signal, 
in-phase and out-of-phase components of the torque signal,  and dis- 
placement signal were recorded on magnetic tape by a high-speed 
digital converter and relayed to the computer for data reduction.    The 
method used for reducing the data may be found in Ref.   3. 

The orbiter models were tested alone and in proximity with the 
booster model to obtain interference-free and interference data,  respec- 
tively.    The orbiter model could traverse in the longitudinal direction, 
and the booster model was movable in the vertical plane of the tunnel. 
For a given orbiter longitudinal position (X/L) relative to the booster 
model which was at a pre-determined separation distance (Z/L) relative 
to the orbiter model,  the orbiter model was pitched to discrete angles 
of attack,  and damping data were obtained. 
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A matrix of test conditions is shown in Fig.   6,  and a test summary 
of model configurations and wind tunnel test conditions is presented in 
Tables I and II (Appendix II),  respectively. 

3.2   DATA PRECISION 

The balance was calibrated before and after the tests,  and check 
calibrations were made before and after each run.   In addition,  struc- 
tural damping values were obtained at vacuum conditions before the 
tunnel entry to evaluate the still-air damping contribution. 

The estimated uncertainty of the dynamic- and static-stability de- 
rivatives using an analysis presented in Ref.  4 is as follows: 

For the straight wing orbiter, 
Uncertainty 

M. Rejj x 10"6 ACma A(Cm   +Cm(i) 

1.76,   2.00                1.95 ±0.068 ±0.87 
1.76                      4.23 ±0.053 ±0.99 
1.76                       6.33 ±0.049 ±1.07 

delta wing orbiter, . 

M«,                Reft x 10-6 

±0.02 

A(Cmq + Cmi) 

2.00                1.95, 4. 08 ±0. 11 

SECTION IV 
RESULTS AND DISCUSSION 

Figures 7 and 8 show the comparison of the interference data 
(orbiter in proximity with the booster) and the interference-free data 
(orbiter alone) for the straight wing orbiter at M,,, = 2.    For the separa- 
tion parameters (X/L, Z/L) investigated, the interference derivatives 
show approximately the same levels as the interference-free derivatives. 
The dynamic and static derivatives also show no large variation with 
angle of attack (Fig.  8). 

Figures 7 and 8 also show Orlik-Ruckemann's dynamic stability 
data that were obtained at the  National Aeronautical Establish- 
ment (NAE) at M. = 1.8 using the half-model technique.   The NAE 
orbiter and booster were 0. 00278-scale straight wing models.    The NAE 
Cnio/ data were transferred to the present center-of-gravity position 
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(xcg/i = 0. 601) using a value for CNQ, of 3. 44 per radian.    The NAE 
damping data generally show fair agreement with the present damping 
data (Figs.  7a and 8).    However, the NAE static stability data show the 
configuration to be substantially less stable than the present data.    This 
disagreement will be further discussed in a later paragraph where the 
data comparison is at essentially the same Mach number. 

Additional comparisons (Refs.  5 and 6) of the interference-free 
static-stability derivatives for the straight wing orbiter are shown in 
Fig. 9.   The NASA-Ames and -Langley data trends are similar to the 
present data trends,  but for the positive angles of attack,  the absolute 
levels of the NASA data are higher than the present data. 

The effect of Reynolds number on the interference-free dynamic 
derivatives for the straight-wing orbiter at M,,, = 1. 76 is shown in 
Figs.   10 and 11.    The damping-in-pitch derivatives at an average angle 
of attack of approximately 0. 6 deg and at »trim increased slightly with 
increasing Reynolds number (Fig.   10).    The static-stability derivatives 
were essentially invariant with Reynolds number (Fig.   10).   In Fig.   11, 
the dynamic derivatives show no large gradients for the angle-of-attack 
range of -2 to 6 deg for the Reynolds numbers investigated.   In general, 
the damping derivatives increased with Reynolds numbers for the angle- 
of-attack range investigated.    The static-stability derivatives (Fig.   11) 
decreased with increasing angle of attack and were not a function of 
Reynolds number.    With Mach number and Reynolds number essentially 
matched, the NAE damping data at a = 0 compare favorably with the 
present data (Fig.   11).   However, the absolute level of the NAE Crn« 
data was approximately 50 percent lower than the present data.    The 
NAE data were obtained using the half-model test technique, whereas 
the present data were obtained on a 3-dimensional model. 

Figure 12 shows the effect of oscillation amplitude on the 
interference-free dynamic- and static-stability derivatives at MB = 1. 76 
for Rejg ■ 6. 4 x 106.   Increasing the oscillation amplitude from ±1 to 
±1.6 deg increased model damping but had no effect on the static - 
stability derivatives.    Typical interference and interference-free 
schlieren photographs for the straight wing shuttle configuration are 
shown in Fig.   13. 

The interference and interference-free dynamic- and static-stability 
derivatives as a function of angle of attack are shown in Fig.   14 for 
various positions of the delta wing orbiter relative to the delta wing 
booster.   The interference and interference-free dynamic- and static- 
stability derivatives were essentially invariant with angle of attack. 
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The delta wing orbiter data are shown in Figs.   15 and 16 as a func- 
tion of X/L for Z/L ■ 0. 15 and 0. 35,  respectively.    The dynamic- and 
static-stability derivatives show no large variation with relative longi- 
tudinal position of the orbiter to the booster,  and the derivatives are 
about the same level as the interference-free data.   It is interesting to 
note that,  at X/L - -0. 1,  Z/L - 0. 15 (Fig.  15), model damping is a 
minimum at a - 0 and ±2 deg compared with the other X/L positions. 
At a = 4 deg,  model damping is invariant with X/L.    By referring to the 
schlieren photographs (Fig.  17b) for these test conditions,  the orbiter 
nose at a = 4 deg is much closer,  or within the booster bow shock, than 
at a = 0 and -4 deg. 

Figures 18 and 19 show the effect of the vertical separation distance 
(Z/L) on the damping and static derivatives for X/L ■ 0. 02 and -0. 31, 
respectively.    Model damping and static stability generally decreased 
as Z/L was increased.    An exception to this was at a = -4, X/L = 0. 02, 
where the static stability increased (Fig.   18b).    The level of the 
interference-free data generally was between the level of the interfer- 
ence data at Z/L = 0. 15 and 0. 35. 

Results of a modest investigation of Reynolds number effect on the 
delta wing interference data are shown in Figs.  20 and 21.    For 
Rejg = 2 x 106 and 4 x 10^,  the levels and trends of the dynamic- and 
static-stability derivatives are approximately the same. 

The effect of elevator angle on the delta wing orbiter at M,,, = 2 is 
shown in Fig.  22.    Model damping was not affected by the elevator angle. 
Changing the 6e from 0 to -20 increased the trim angle from 1. 5 to 
4. 8 deg,  respectively,  and also increased the static stability. 

SECTION V 
CONCLUSIONS 

Wind tunnel tests were conducted to obtain dynamic-stability data on 
a three-dimensional vehicle when in close proximity with another vehicle. 
Data were obtained at Mach numbers 1. 76 and 2. 00 at Reynolds numbers 
(based on orbiter modei length) of 2. 03 x 106 to 6. 33 x 106.    Conclusions 
based on the results presented in this report are given below: 

1.     For the present test conditions and configurations, 
the orbiter dynamic- and static-stability derivatives 
were not greatly affected when the orbiter vehicle 
was in close proximity with the booster vehicle. 
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For the interference-free delta wing configuration 
at Mg, = 2. 00,   Rejg - 2 x 106,  the dynamic- and static- 
stability derivatives were essentially invariant with 
angle of attack. 

SECTION VI 
FURTHER POSSIBLE DEVELOPMENTS 

The limited AEDC and NAE test results showed no striking effects 
of the proximity of the booster on the pitch dynamic stability of the 
orbiter.    However,   one must not conclude that an abort dynamic - 
stability problem does not exist.   These tests were conducted at essen- 
tially one Mach number and one Reynolds number,   while the abort con- 
dition could be at any one of several Mach number and Reynolds number 
combinations.    The effect of the following additional parameters should 
also be investigated:   Mach number,  wider range of Reynolds numbers, 
center-of-gravity location,  reduced frequency parameter,  and amplitude 
of oscillation with either one or both vehicles oscillating.    In addition, 
the damping derivatives could be configuration dependent. 

The test technique used for the present test can also be used in the 
Mach 8 and 10 wind tunnels at the AEDC von Karman Gas Dynamic Facil- 
ity (VKF).   With some modification, there is also the possibility that the 
present technique could be used in the AEDC Propulsion Wind Tunnel 
Facility (PWT) for testing at subsonic and transonic Mach numbers. 
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B 0.26 0.15 0 0.0191 0   - 3.0 3.0 
B -0.29 0.35 0 0.0187 -1.5 * 3.9 .1.1 
B 0.26 0.35 0 0.0193 -4.2 f 0.4 -2.3 

SWO+DWB A -0.11 0.17 0 0.0071 -4.3 * 5.8 3.2 + A 0.20 0.17 0 0.0072 -3.9 + 7.3 7.2 

*e %±1 deg 

Configuration Nomenclature 

e % ±1.6 deg 

SWO - Straight Wing Orbiter Alone 
DUO - Delta Wing Orbiter Alone 
SWO+DWB - Straight Wing Orbiter in Proximity with Delta Wing Booster 
DWO+DWB - Delta Wing Orbiter in Proximity with Delta Wing Booster 
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TABLE II 
WIND TUNNEL TEST CONDITIONS 

Schedule M» 00 psia Is °R ft/sec 
q. 

psia 
Reji 

x 10-6 

;. A 1.99 4.00 561 1726 1.44 2.03 

.    B 2.00 8.04 560 1729 2.88 4.07 

C 1.76 3.98 561 1606 1.60 2.10 

D 1.76 8.00 560 1604 3.21 4.23 

E 1.76 12.01 561 1606 4.81 6.33 
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